41 research outputs found

    Unveiling the power of microenvironment in liver regeneration: an in-depth overview

    Get PDF
    The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver’s fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration

    RingMo-lite: A Remote Sensing Multi-task Lightweight Network with CNN-Transformer Hybrid Framework

    Full text link
    In recent years, remote sensing (RS) vision foundation models such as RingMo have emerged and achieved excellent performance in various downstream tasks. However, the high demand for computing resources limits the application of these models on edge devices. It is necessary to design a more lightweight foundation model to support on-orbit RS image interpretation. Existing methods face challenges in achieving lightweight solutions while retaining generalization in RS image interpretation. This is due to the complex high and low-frequency spectral components in RS images, which make traditional single CNN or Vision Transformer methods unsuitable for the task. Therefore, this paper proposes RingMo-lite, an RS multi-task lightweight network with a CNN-Transformer hybrid framework, which effectively exploits the frequency-domain properties of RS to optimize the interpretation process. It is combined by the Transformer module as a low-pass filter to extract global features of RS images through a dual-branch structure, and the CNN module as a stacked high-pass filter to extract fine-grained details effectively. Furthermore, in the pretraining stage, the designed frequency-domain masked image modeling (FD-MIM) combines each image patch's high-frequency and low-frequency characteristics, effectively capturing the latent feature representation in RS data. As shown in Fig. 1, compared with RingMo, the proposed RingMo-lite reduces the parameters over 60% in various RS image interpretation tasks, the average accuracy drops by less than 2% in most of the scenes and achieves SOTA performance compared to models of the similar size. In addition, our work will be integrated into the MindSpore computing platform in the near future

    Analysis of occupational identity among family doctor teams and its influencing factors in Chengdu

    Get PDF
    BackgroundThe contracted family doctor services are the embodiment of the implementation of the new medical reform policy, and the transformation of the grass-roots health service mode. Studies have proved that the occupational stress in medical staff was at a high level. The enhancement of professional identity will contribute to strengthen team building,alleviate job burnout, and reduce turnover intention of family doctors. ObjectiveTo investigate the current situation of occupational identity among family doctor teams in Chengdu, to examine potential influencing factors of occupational identity, and to provide a reference for promoting career development and team building of family doctor teams. MethodsMulti-stage random cluster sampling was adopted to enroll study participants form 46 primary healthcare centers where family doctor contract services were implemented among 23 districts and counties in Chengdu between March 4 and 26, 2021. A total of 2 681 family doctors participated in this survey. A self-reported survey was conducted to collect participants' demographic and occupational data. The Effort-Reward Imbalance (ERI)questionnaire was implemented to assess occupational stress. The Professional Identity Scale was used to appraise occupational identity. ResultsA total of 2 327 valid questionnaires were collected, with a valid recovery rate of 86.80%, involving 1 715 females (73.7%) and 612 males (26.3%), with dominant age groups of 26−35 years (43.3%) and 36−45 years (30.4%), a high proportion of being married (82.8%), having college (36.0%) and undergraduate (47.3%) education, a high proportion of primary titles (66.0%) and informal work contract (66.1%). About 88.7% of family doctor team workers reported occupational stress. The average score of occupational identity was (3.68±0.62) points. There were significant differences in occupational identity scores among different professional title, work contract, working years in medical institutions, income, and effort/reward ratio (EER) groups (P < 0.05). ERR was negatively correlated with occupational identity (rs=−0.495, P<0.05). The multiple regression model showed that occupational identity score in the non-staffed participants was lower than the score in the staffed ones (OR=0.429, 95%CI: 0.299−0.825). The occupational identity score in the participants having associate senior title or above was higher than in without professional title (OR=1.424, 95%CI: 1.194−2.328). The longer the working years, the higher the occupational identity score among the participants. The score of the more than 20 working years group was 1.820 times that of the less than 5 working years group (95%CI: 1.342−2.543). The higher the income, the higher the occupational identity score. The score of the 9001−12000 yuan per month group was 1.977 times that of the 1000−3000 yuan per month group (95%CI: 0.811−9.696) , and the score of the more than 12000 yuan per month group was 2.283 times that of the 1000−3000 yuan per month group (95%CI: 1.199−10.267). ConclusionThe family doctor team workers generally report occupational stress, and their occupational identity is at a medium level in Chengdu. Relevant managers should implement intervention measures against the main influencing factors to reduce their work tension and improve their occupational identity

    Nutrient and ruminal fermentation profiles of seed residues with fungal pretreatment

    No full text
    Objective The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pre-treated Camellia seed residues for ruminants. Methods Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. Results After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. Conclusion The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF

    Comparison of Ordinary Cannulated Compression Screw and Double-Head Cannulated Compression Screw Fixation in Vertical Femoral Neck Fractures

    No full text
    Background. The treatment of vertical femoral neck fractures in young patients remains a challenge. This study is aimed at comparing ordinary cannulated compression screw (OCCS) and double-head cannulated compression screw (DhCCS) fixation in vertical femoral neck fractures both clinically and biomechanically. Materials and Methods. Clinically, the radiographs of 81 patients with Pauwel’s III femoral neck fractures, including 54 fractures fixed with three parallel OCCSs and 27 fractures fixed with three parallel DhCCSs, were reviewed retrospectively. Complications consisting of fixation failure (screw loosening, obvious fracture displacement, varus deformity, or femoral neck shortening), bony nonunion, and avascular necrosis (AVN) were determined. Biomechanically, twenty synthetic femur models of vertical femoral fractures with an 80° Pauwel’s angle were divided into two groups and subsequently fixed with three parallel OCCSs or DhCCSs. All specimens were tested for axial stiffness, load to 5 mm displacement, and a maximum load to failure with a loading rate of 2 mm/min. Results. Clinically, 22 fractures in the OCCS group experienced fixation failure, including 19 screw loosening, 18 femoral neck shortening, 14 varus deformities, and 8 obvious fracture displacements, whereas only 4 fractures experienced fixation failure in the DhCCS group, including 3 screw loosening, 3 femoral neck shortening, 3 varus deformities, and 1 obvious fracture displacement. Additionally, 11 fractures in the OCCS group exhibited nonunion, whereas only 3 in the DhCCS group exhibited nonunion. Nine fractures with AVN were noted in the OCCS group, whereas only 1 was observed in the DhCCS group. Biomechanically, the axial stiffness of the DhCCS group was greater than that of the OCCS group (154.9±6.81 vs. 128.1±7.41 N/mm), and the load to 5 mm displacement was also significantly greater in the DhCCS group (646.1±25.87 vs. 475.8±21.46 N). Moreover, the maximum load to failure in the DhCCS group exhibited significant advantages compared with that of the OCCS group (1148±39.47 vs. 795.9±51.39 N). Conclusion. Our results suggested that using three DhCCSs improved the outcome of vertical femoral neck fractures compared to three OCCSs, offering a new choice for the treatment of femoral neck fracture

    An Improved Platform for Multi-Agent Based Stock Market Simulation in Distributed Environment

    No full text

    Optimization of a Nanofiltration Desalination Process for Antarctic Krill Peptides Using Orthogonal Tests

    No full text
    Antarctic krill (Euphausia superba), an important group of marine zooplankton in the Southern Ocean, is the only fishery resource with extremely rich reserves and a low degree of development in the world. Antarctic krill is considered to be the greatest potential source of high-quality marine protein resources due to its abundant biomass and high protein content. Peptides prepared from Antarctic krill exhibit multiple physiological activities, including osteoporosis relief, glucose metabolism regulation, blood pressure amelioration, antioxidation, fatigue alleviation, and anti-aging activity. The production and development of Antarctic krill peptides has recently become an industry focus; however, existing research has been limited to the optimization of enzymatic hydrolysis processes, mainly involving the screening of suitable enzymes and the optimization of enzymatic hydrolysis conditions. Due to the high mineral content of Antarctic krill and the introduction of buffer salt in the process of enzymatic hydrolysis, current Antarctic krill peptides products have a high salt content, which leads to poor sensory experience and health risks. Hence, a process for desalination of Antarctic krill peptides is needed. Desalination methods for bioactive substances include dialysis, ultrafiltration, nanofiltration, electrodialysis, and macroporous resin adsorption. In the field of membrane separation, nanofiltration technology has been widely used in the purification, concentration, and desalination of food components owing to its advantages: low operation cost, no introduction of exogenous substances, no destruction of materials, and low rejection rate of monovalent ions. In order to improve product quality and ensure market expansion, the process of desalination of Antarctic krill peptides using nanofiltration technology was studied and optimized in this study.Defatted Antarctic krill powder was enzymatically hydrolyzed by alkaline protease to obtain Antarctic krill peptides for further use. The main factors affecting the desalination effect of Antarctic krill peptides (peptides concentration, nanofiltration pressure, and cycle times) were optimized by single-factor and orthogonal tests, using the desalination rate and protein loss rate as evaluation indexes. The experimental optimization ranges included peptides concentration of 1%~5%, nanofiltration pressure of 0.6~1.4 MPa and cycle times of 1~5. The salt contents of the samples before and after desalination were quantified using the silver nitrate titration method; the protein contents of the experimental samples were quantified using the Lowry colorimetric method. The quality indexes of the Antarctic krill peptides after treatment (including the basic nutritional composition: moisture content, protein content, ash content, salt content; amino acid composition; and molecular weight distribution) were systematically evaluated by the corresponding national standard methods. All experiments were performed in triplicate, and data were expressed as mean ± standard deviation. Excel 2016, IBM SPSS 20.0, and Origin 2018 were used for data analysis and chart drawing.Single-factor tests revealed that peptides concentration of 3%, nanofiltration pressure of 1.0 MPa and a cycle time of 2 could be selected as the design basis for the L9 (33) orthogonal test. The range value of the orthogonal test indicated that the degree of influence of the three factors on the desalination effect was as follows: peptides concentration > cycle times > nanofiltration pressure. The optimum conditions for desalting Antarctic krill peptides obtained by k value analysis were as follows: peptides concentration of 3.0%, nanofiltration pressure of 1.2 MPa and a cycle time of 3. Under the optimal condition, the desalination rate of the Antarctic krill peptides reached up to (86.35±2.11)%, and the protein loss rate was controlled at (9.10±0.35)%, demonstrating the feasibility of the process. The salt content of the Antarctic krill peptides after desalination was reduced to (1.14±0.12)% and the protein content was (92.73±2.29)%. The molecular weights of the Antarctic krill peptides after desalination were mainly distributed between 189 Da and 6500 Da, of which the proportion of peptides with molecular weight less than 3000 Da was (88.91±2.19)%, conforming to the molecular weight distribution range of bioactive peptides. The amount of essential amino acids in the Antarctic krill peptides after desalination accounted for (40.06±0.10)% of the total amino acids, and the ratio of essential amino acids to nonessential amino acids was (66.82±0.28)%. The amino acid compositions of the Antarctic krill peptides after desalination were ideal and met the standard stipulated by the FAO/WHO. The established nanofiltration desalination process presented good treatment effects, and the obtained peptides were of good quality and high nutritional value.The production of Antarctic krill protein-related products may be the next key development for the processing industry, since the sole high-value products of Antarctic krill at present are Antarctic krill oil and its derivatives. The established nanofiltration desalination process has practical application value and would provide technical support for the development of high-quality Antarctic krill peptides. This research provides scientific support for the efficient utilization of Antarctic krill resources

    A Novel Grain-Based DEM Model for Evaluating Surface Integrity in Scratching of RB-SiC Ceramics

    No full text
    A novel grain-based DEM (Discrete Element Method) model is developed and calibrated to simulate RB-SiC (Reaction-Bonded Silicon Carbide) ceramic and associated scratching process by considering the bonded SiC and Si grains and cementitious materials. It is shown that the grain-based DEM model can accurately identify transgranular and intergranular cracks, and ductile and brittle material removal modes. It also shows that by increasing the scratching speed or decreasing the depth of cut, the maximum depth of subsurface damage decreases, because the scratching force is relatively large under the low scratching speed or large depth of cut that facilitates the occurrence of transgranular cracks, large grain spalling from the target surface and the propagation of median cracks into the target subsurface. It has further been found that increasing the cutting-edge radius can enhance the target ductile machinability and reduce the target subsurface damage
    corecore